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Abstract

In aerospace computational fluid dynamics (CFD)

calculations, the Delannay triangulation of suitable

quadrilateral meshes can lead to unsuitable triangu-

lated meshes. In this paper, we present case studies

which illustrate the limitations of using structured
grid generation methods which produce points in a

curvilinear coordinate system for subsequent trian-

gulations for CFD applications. We discuss condi-

tions under which meshes of quadrilateral elements

may not produce a Delaunay triangulation suitable

for CFD calculations, particularly with regard to high
aspect ratio, skewed quadrilateral elements.

1 Introduction

In computational fluid dynamics (CFD) applications,

the problem domain must be discretized into meshes

(or grids) over which the governing equations of fluid
dynamics are solved. The two major classes of grids

for aerospace CFD applications are structured grids
and unstructured grids. Structured grids are curvi-

linear grids designed so that the neighbors to any

element are implicitly known. These grids have been

studied for quite some time and techniques for their

construction are well understood [2]. Unstructured

grids are composed of elements in which neighbors

must be explicitly listed. The component elements

are usually, but not necessarily, triangular. These

grids are currently not as widely used in aerospace ap-

plications, and have been the object of recent interest

[3, 4, 5]. Several properties of Delaunay triangulation
[6, 7, 8, 9] make it attractive to use in unstructured

grid generation. However, a major drawback to this
method is the need for a separate method of point

generation; a straightforward approach to this draw-

back isthe use ofa structuredgridgeneratortocreate

the necessarypoints [10,11, 12, 13].

Certain featuresof structuredgrids are usefulto

maintain in unstructured grids. Most commonly,

structuredgrids are body-fittedcurvilinearmeshes

where contours followthe objectboundaries. Struc-

tured grids may also contain very high aspect ratio

elements. This allows properties of the problems be-

ing solved to be exploited; in general, very high so-
lution gradients can exist perpendicular to surfaces,

and very small solution gradients tangent to surfaces.
Unstructured meshes should exhibit the same "struc-

ture" which orients the cells along a feature of in-

terest. When a structured grid contains high aspect

ratio grid cells, the Delaunay triangulation of the grid
points may not maintain the original grid lines of the

structured grid (Figures 1 and 2). Orientation of the
cells in a particular direction is lost when this occurs.

This study investigates conditions under which De-

launay triangulations of points from structured grids
will maintain the original grid structure. The effects

of skew and aspect ratio on the Delaunay triangula-
tion are studied.

2 Preliminaries

First consider a general case of points distributed ar-

bitrarily along straight lines a distance h apart, with

the points no more than s apart, and s > h. What
relationship must exist between s and h so that the

lines are guaranteed to be in the Delaunay triangula-
tion of the points.

Let PI = (-s/2,0) and P2 --(s/2,0)be two points

on the liney = 0 (the resultscan be generalizedto

any location,but thesepointswere chosenforsimplic-

ity of analysis).One scenario could have points on

successivecontours shiftedby s/2, e.g.,RI = (0,h)



and R_ = (0,-h). For the edge PIP2 to be included

inthe triangulationofthe points,the circumcirclefor

PI, P2, RI must not containR2, and likewise,the cir-

cumcircle for PI, P2, R2 must not contain Ri. The

circumcenterof P1, P2, RI is(0,h/2 - s2/8h). The

circumcenterof PI, P2, R2 is(0,-h/2 + s2/8h). To

guarantee thatedge PIP2 isinthe triangulation,then

-h/2+s_/8h < h/2- s2/8h

s2/h 2 < 4

s/h < 2

assuming distances positive.

Without knowing anything else about the distribu-

tion of points along the contour lines, we must con-

clude that the aspect ratio of the triangles can be no

greater than 2 to guarantee that all original edges are
in the triangulation. The introduction of structure

into the points locations allows for larger aspect ra-
tios under certain conditions. The remainder of this

section defines some of the concepts to be used, and
following sections explore this idea in further detail.

Definition 1 A structured grid is an undirected
graph G=(V,E) with vertez set V and edge set E such
that

v = {v_a [vv_a3(z_a, u_a) e _,

O<_i <_rn, O<_j <n}

E = {(u,w) IVv,a e v,
i _ m =_ (via, Vi+lj) • E

j ¢ n = (Via , via+l ) • E}

Definition2 A graph G = (V,E) is called
Delaunay-embeddable if G is a subgraph of the De-

launay triangulation of V, D(V).

Definition 3 A rectangular structured grid is a

structured grid G = (V, E) where the location of each

vla is given by:

zia = i. s

Yia = j . h

where s, h • _, O < i < m, and O <_ j <_ n.

Points in a rectangular structured grid have a con-

stant spacing in z and a (possibly different) constant
spacing in y.

Definition 4 The aspect ratio of a structured grid

element is the ratio s/h, where s is the length of a

long side and h is the separation between the sides of

length s.

Definition 5 A skewed structured grid with aspect

ratio s/h is a structured grid where the location of
each via is given by:

zla = i . s + j . dz

Yia = j • h

where dx <_ s/2, 0 <_ i < m, and O <_ j <_ n.

Points in a skewed structured grid still exhibit con-

stant spacing in z and y, however, at each level, a
constant shift in a: from the previous level results in

a grid of parallelograms. The amount of skew in a

skewed structured grid is 0, the angle formed by a

perpendicular to one of the quadrilateral sides at a

corner (Figure 3).

Definition 6 The Delaunay angle cut-off is the an-

gle beyond which a skewed structured grid is no longer
Delaunay-embeddable.

Definition 7 A simple stretched structured grid is a

structured grid where the location of each v_,/ is given
by:

J

_eia = i" s + E dz(l + e)k
k=O

Y_a = { 0, j_l j=0)"_k=0h(l+e) k, j=l,2,...,n

where dz < s/2, 0 < e < s, O < i < m, and O < j <
n.

The simple stretchedstructuredgrid is one which

exhibitsa constant multiplicativegrowth in spacing
between levels.This willbe referredto asa stretched

structuredgridfor the remainder ofthe paper.

The followingfactsare to be noted: The centerof

any circlewhich passesthrough PI = (-s/2,0) and

/'2= (s/2,0)willlieon the linez = 0 (ingeneral,the

centerwilllieon the linewhich isthe perpendicular

bisectorto linesetment PIP2). Delaunay triangula-

tionshave the followingproperties:For any convex

quadrilateralinthe triangulation,the diagonalisse-

lectedsuch that the minimum angle ismaximized;

the diagonal selectedisnot necessarilythe shortest

diagonal.For the degeneratecase of four co-circular

points,one of two edges may be selected;in such

cases,the edge which isa member of the edge set E
ischosen.



3 Skewness and Aspect Ratio

Given a set of quadrilaterals, ideally the principle

direction of the skewed triangles should follow the

original boundaries of the quadrilaterals. However,

if there is skew (i.e., the quadrilaterals are parallelo-

grams rather than rectangles), then it is possible for
the Delaunay triangulation to break the quadrilateral
boundaries. This section describes the conditions un-

der which this happens.

The case of a skewed structured grid with s > h is

studied (Figure 4). The goal is to produce a Delaunay
triangulation of the points in the vertex set V such

that each triangle lies between the lines y = jh and

y = (j + 1)h. In other words, we will determine the

restrictions on the grid such that the skewed struc-

tured grid is Delaunay-embeddable.

First let us consider any parallelogram with aspect

ratio s/h, with s > h. The short diagonal creates two

angles, _ and/3, with/3 opposite the side of length s.

As the parallelogram is skewed by 0, an amount 5 is

added to two opposing corners and subtracted from

the remaining two corners, causing a shift of dz to
the upper two corner points (Figure 5).

Lemma 1 As 0 increases, _ and/3 both increase.

Proof: Consider points Ps and P4 at the

upper corners of a rectangle. Shift these

points a distance dz relative to P1 and P2.

This is the same as adding _ to angle P1PsP4

and angle P1P2P4. Originally, the diagonal

from P3 to P2 made angles a and /3 with
the sides P1 P2 and P2P4. Since we started

with a rectangle, _ and /3 are guaranteed
to be less than 90 degrees. Since s > h,

[PsP2[ > [P1Ps[. When the points Ps and

P4 are shifted a distance dz to new points

P_ and P_, two new angles al and ff are

achieved. Let 81=the angle PsP2P] and
02=the angle P4P2P_. e_I = 0_+01 and ff =

/3 - 01 + 0_. It is immediately apparent that

a t > a. ff > fl because IPaP2l > IPlPal
implies 0_ > 01 while dz _< s/2. m

Now consider adjacent quadrilaterals PIPaPsP4

and PaP4PsP6 within a skewed structured grid. A

skewed structured grid is Delaunay-embeddable for

the degenerate case dz = 0 since the corner points of

any quadrilateral will be co-circular. For P1P_PsP4,
either P1P4 or P2P3 could be chosen as diagonals.

The following facts are to be noted:

• dz=0ands> h =_ /3<90and LP1P2Ps>

LPsP2Ps.

• /.P1P_Pa _- £P4PsP2

• As a quadrilateral P1P2PsP4 is skewed, edge

P2Ps will be in the Delaunay triangulation of
its points.

• /P1P_Ps is the smallest angle in the Delaunay

triangulation of P1P2PsP4.

Lemma 2 If/3 < 90 degrees, then a skewed struc-

tured grid is Delaunay-embeddable.

Proof: From Lemma 1, we know that

/3 increases as dz increases. It follows that

/3 approaches 90 degrees as dz increases.
Since the lines are a constant distance h

apart, when/3=90 degrees, the diagonal line
PsP2 becomes a perpendicular bisector for

the line P1Ps, and at this point PsP_ also
bisects the angle formed by P1P2Ps.

The convex quadrilateral formed by

points PaPsPsP4 (Figure 6) has as its diag-

onal either PaP4 or P2Ps. When dz = 0,
we know that P3P4 is selected as the di-

agonai, because /-P4P3P2 is the larger of

the smallest angles in the possible trian-

gulations of this quadrilateral. As a skew

of 0 is introduced to the grid, P5 moves

faster than Pa, so /-P3P2Ps grows faster

than/P1P2P3 (from lemma 1 we know that

both will increase). When/3 = 90 degrees,

the two angles are equal, and because s > h,
/.P4PaP_ < /.PsPaP4. When fl exceeds 90
degrees, then because/-PaP2P5 is increasing

faster, it becomes the larger of the smallest

angles in the possibh Delaunay triangula-
tions of P2PaPsP4, and PaPs is then selected

as the diagonal, m

When this occurs, the Delaunay triangulation no

longer includes the original quadrilateral boundaries.

Lemma 3 If s/h <_ 2, then a skewed structured grid
is Delaunay-embeddable.

Proof: At dx = 0, /3 < 90 degrees. /3
reaches a maximum at dx = s/2. When

s/h < 2, /3 < 90 degrees at dz = s/2,
and the grid remains Delaunay-embeddable.

When s/h = 2,/3 - 90 degrees at dz = s/2,

and the grid is Delaunay-embeddable. ra



Theorem 1 As aspect ratio increases, the Delaunay

angle cut-off for a skewed structured grid decreases.

Proof: From Lemma 2, we know that

the Delaunay angle cut-off occurs when/_ =
90 degrees. At this point, the Pythagorean

theorem gives

s-_
dz --

2

The Delannay angle cut-off 0* is defined by

dz
tanO* = D

h

s-_

2h

For s/h < 2, there is no Delaunay angle

cut-off (lemma 3). As s/h increases, 0" de-

creases (Figure 7). []

Therefore, whether or not a structured grid is

Delaunay-embeddable is dependent on aspect ratio,

and as aspect ratio increases, the "tolerance" for skew
decreases. As s/h gets larger, the value of the De-

launay angle cut-off 0", where the Delaunay trian-

gulation no longer includes the original quadrilateral

boundaries, approaches 0.
For the ease of a monotonic stretched structured

grid, the skew angle derived above is a lower bound.

Theorem 2 As aspect ratio increases, the Delaenay
cut-off angle of a stretched structured grid decreases.

Proof: We need only consider two ad-

jacent quadrilaterals at a time from the

stretched structured grid with aspect ratios

s/h and s/h(1 + e). The skew angle 0 can
be derived from the circumcircles for the two

interior triangles, and is defined by

dx
tanO =

h

s - _/s 2 - 4h 2 - 4oh 2 - _h 2

(2 + _)h

- 2+, - _-_-4-_(4+e)

Since successive levels have different (in-

creasing) values of 0 for e positive, the

grid will be Delaunay-embeddable when 0

is based on the largest aspect ratio elements
found in the grid. []

4 Conclusions

We have shown the limitations of Delaunay triangula-
tions of points from structured grids for aerospace ap-

plications. For the general case of points distributed

along fixed contours, we have shown a restriction on
the aspect ratio for which Delaunay triangulations

can be directly obtained. By imposing a structure

on the point distribution, we have demonstrated the

relationship between aspect ratio and quadrilateral
element skew on the maintenance of contours from

structured grids.
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Figure 1 - Portion of a CFD Grid
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Figure 2 - Delaunay Triangulation of CFD Grid in Figure 1
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Figure 3 - A Skewed Structured Grid Element

P5

P3 P4

P1 P2

Figure 4 - A Skewed Structured Grid



_l-'-dx .- i=,_

P3 P3'

%
%

%

%

%

%

--_-.-dx .- =,.-

P4 P4'

P1 P2

Figure 5 - Effects of Increasing Skew

P5 P6

P1 P2

P5 P6

P1 P2

Figure 6 - 13< 90 and 13>90



4O

e*

3O

-I

e=

2O

10

\

Figure 7

20 40 60 80 i00

s/h
- Delaunay Angle Cut-Off vs. Aspect Ratio





REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pu_fc repOrtang burden for this colte(1zion of In_orm&tlOn is estlm&[_ to average ? hour D_r re%pond, e. including the time for reviewing instructions, searching existing data sources.

gathering and maintaining the data needed, ar_l completing anO reviewing the coIlec%0on of informatton Send comments regard ng th S burden estimate or any other aspect of this

collecl:lOn of information, tncludmg suggestions fOr re, luting th_s Ourden to Washington Headquarters Services. Directorate for Information Operations and Repot%. 1215 Jefferson

Davis Hpghway. Suite 1204. Arlington. VA 22202-4302. anci to the Office of Management and Budget. Paperwork Reduction Projec% (0704-0188). Washington. DC 20503

I. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1992 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Delaunay Triangulation and Computational Fluid Dynamics
Meshes

6. AUTHOR(S)

M. A. K. Posenau and D. M. Mount

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

NU 505-90-53-02

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPON SORING / MONITORING
AGENCY REPORT NUMBER

NASA TM-107663

M. A. K. Posenau: NASA Langley Research Center, Hampton, VA

D. M. Mount: University of Maryland, College Park, Maryland

To be presented at the 4th Canadian Conference on Computational Geometry, August 19c
12b.DISTRIBUTIONCODE12a.DISTRIBUTION/AVAILABILITYSTATEMENT

Unclassified - Unlimited

Subject Category - 59

13. ABSTRACT (Maximum 200 words)

In aerospace computational fluid dynamics (CFD) calculations, the Delaunay

triangulation of suitable quadrilateral meshes can lead to unsuitable triangulated
meshes. In this paper, we present case studies which illustrate the limitations

of using sl;ructured grid generation methods which produce points in a curvilinear
coordi \nate system for subsequent triangulations for CFD applications. We discuss

conditions under which meshes of quadrilateral elements may not produce a

Delaunay triangulation suitable for CFD calculations, particularly with regard
to high aspect ratio, skewed quadrilateral elements.

14. SUBJECT TERMS

Delaunay triangulation

Unstructured grids

Computational Geometry

17. SECURITY CLASSIFICATION 18.
OF REPORT

Unclassified

SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

uncl assi fied

15. NUMBER OF PAGES

9
16. PRICE COOE

A02
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescr*bed by ANSI Std Z3g-18

298-102






